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Chapter 1

About

1.1 A bit of history
The oldest roots of the software originate back in 2008 with personnal rendering projects.

This was followed two years later by an internship at the L2n on the ADI-FDTD method,
which served as the basis for the FDTD module. Concurrent development happened through
the OpenSource Gneiss project (now obsolete), dedicated to rendering space scenes.

The FDTD code was then developed during a PhD under the ANR MetaPhotonique project,
together with some basic tools.

A few years later under the TurboPET project, the raytracing core was coded by integrating
Gneiss’ original raytracer into Aether.

Since then, many improvements have been added, like the GUI, and from 2015 onwards
several upgrades were designed to accomodate the Limule project, a proprietary software coded
for the In-Fine joint laboratory.

1.2 Past Funding
The following fundings have contributed directly and indirectly to the project:

• The University of Technology of Troyes

• The ANR MetaPhotonique project

• A Région Champagne-Ardenne PhD grant

• The Eurostars TurboPET project

• The BISONS RAPID project

• The ANR DECISIoN project

• The SURYS society through the In-Fine joint laboratory

1.3 Aether’s name
The name is an obvious reference to the Luminiferous Aether, which was the theoretical medium
that carried light, over a century ago. It has long been disproven and replaced with Relativity.
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10 CHAPTER 1. ABOUT

One might ask then: why is the name of this software the same as a flawed theory? Simply
put, it is to always remember that simulations are flawed as well. They are nothing but ap-
proximations, always being crude representations of reality. One should always remain wary of
them, and never hesitate to question their validity.

But they are by no mean useless, they are important tools that help guide us towards
what we want to achieve. However, one should never forget that what matters is reality and
experiments, and when experiments and simulations don’t match, it’s not because reality is
wrong, but because we did not understand something.



Chapter 2

Basics

2.1 Conventions
In this user manual, some conventions will be followed:

• var is a function or a GUI control

• var is an integer

• var is a real number

• "var" is a string. The quotation marks are required in the corresponding code

• var is a string without quotation marks, usually a file name or a special variable

• var will be reserved for the less common types, and their actual type will be stated on a
case by case basis

• function arguments are written in meters if they are lengths, and degrees if they are angles

• the chosen convention with respect to plane waves (and thus the fourier transform) is
ei(k⃗ · r⃗ − ωt). This means that the imaginary parts of refractive indexes and permittivities
must be positive.

2.2 Lua
The scripting language which was chosen is Lua. It is an interpreted language much like Python
or MatLab.
Its manual is available on: https://www.lua.org/manual/5.4/

2.3 Script based operation
The software was originally written to be used without any graphical interface. Still, ease of
use required some sort of interface, and it was chosen to bind the core of the software to a
scripting language, so that scripts could be used to define the various parameters and functions.
Moreover, a full scripting language allows running computations or operations within the script
itself, expanding the capabilities of Aether.

11
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12 CHAPTER 2. BASICS

The software is controlled through a script file which must be provided to it on launch. By
default, it will look and use the script.lua in the working directory.

Because Aether is comprised of various tools, it is necessary to differentiate them in a
somewhat unified manner. This is done through the MODE function, for which the sole
argument is the name of these tools.

This function returns a pointer that can be used to modify the behavior of the related
operation. The name of this pointer is entirely up to the user. For instance:

fdtd_1=MODE("fdtd_normal")

will return a object that specifies an FDTD computation. The object can then be modified. In
Lua, operations on this pointer are done through the “:” operator which calls functions tied to
this object, For instance:

fdtd_1:polarization("TE")

will modify the polarization property of the previously defined FDTD simulation.

2.3.1 Special Modes

Beyond the various modules, there are two special modes that can be called:

• Calling MODE("pause") pauses the software until the user presses the Enter key.

• Calling MODE("quit") discards the rest of the script and ends the software.

Those are mostly used for debugging or logging purposes. Still, their name is exposed here in
case someone finds uses to them.

2.4 GUI Interface

2.4.1 Graphs



Chapter 3

The Materials Library

3.1 Constant materials

Those are the most simple materials. They are characterized by a real, constant refractive
index for every wavelength. They are first defined through the set_constant() function, and
the refractive index is then specified through either the index_infty(index) function, or the
epsilon_infty(epsilon) function, εr being the argument in the latter case.
Example:

set_constant ()
index_infty (1.5)

As explained in 6.1.7, in the case of a constant material the whole material script can also
be replaced in the main script by a call to const_material.

3.2 Simple dispersive materials

Those are the simplest models that are used to define materials like glasses in the spectral range
where they are transparent. Those materials are not FDTD compatible.

3.2.1 Cauchy

3.2.2 Sellmeier

3.3 Absorbing dispersive materials

Those materials are another kind of elementary material, mostly used to describe metals. They
are implemented in the software through the recursive convolution method [2].

First, the material is set as dielectric through the set_dielectric() function. ε∞ is then
defined thanks to epsilon_infty(ε∞). This value is real. The full dielectric model can be a
combination of the elementary dielectric models, and is thus defined through successive calls of
the add_drude, add_lorentz or add_crit_points functions. As the number of elementary
dielectric models increases, so will the amount of needed computer memory, and the computation
time.

13
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Finally, the evaluate(Nl,λ1,λ2) function evualuates the dielectric model between λ1 and λ2
with Nl sampling points. The result is written in a file called mat_eval.m. It can be loaded
in MatLab or GNU Octave.

3.3.1 Drude model

This basic model is very useful to describe metals in the infrared part of the spectrum. It is
defined by

ε(ω) = ε∞ − ω2
D

ω2 + iγω
(3.1)

and is turned into through add_drude(ωD,γ). This model is FDTD compatible.

3.3.2 Lorentz model

Another basic model useful for the description of metals, defined by

ε(ω) = ε∞ + A
Ω2

Ω2 − ω2 − iΓω
(3.2)

it is defined through add_lorentz(A,Ω,Γ) This model is FDTD compatible.

3.3.3 Critical points model

This model was initially introduced to described the permittivity of gold in the blue part of the
spectrum [3], and was then adapted to FDTD by [4]. Its dielectric function is

ε(ω) = ε∞ + AΩ
(

eiφ

Ω − ω − iΓ + e−iφ

Ω + ω + iΓ

)
(3.3)

and this model is used through add_crit_point(A,Ω,φ,Γ). This model is FDTD compatible.

3.3.4 Full example

The following example defines a gold dielectric model from 400 to 1000 nm. The permittivity
first is set to 1.03, and a drude model and two critical points models are then added. The
validity range is then set based on the original data fit.
set_dielectric ()

epsilon_infty (1.03)
add_drude (1.3064e16 ,1 .1274e14)
add_crit_point (0.86822 ,4.0812e15 ,-0.60756 ,7 .3277e14)
add_crit_point (1.3700 ,6.4269e15 ,-0.087341 ,6 .7371e14)

validity_range (400e-9 ,1000e-9)

3.4 Data table based materials

set_data_file("data/Si_400_1000.dat")
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Chapter 5

Structures

5.1 Main script and the structure object
Structures are not defined within the main script but in their own specific script. They still need
to interact with the main script through structure objects. Those are defined by the user
through the mean of the Structure("structure script") function, where structure script is
the path to the relevant file. Example:

struct=Structure("structures/nanorods_grid.lua")

Structure objects have their own functions that can be used to interact with them after
loading the file.

5.1.1 Parameters

Structure files can be written in a “generic” way, depending on named input parameters. These
parameters have a default value, but can be set through the parameter("name" , value)
member function, where name is the related parameter name, and value what to assign to it.
Example

struct:parameter("P" ,500e-9)

5.1.2 Other functions

print("directory",Dx,Dy,Dz)

This function will turn the structure into a sequence of images within directory/grid, using a
color gradient to display the material index. It uses Dx, Dy and Dz as the spatial discretization
to do so. Example

struct:print("test_directory",5e-9,5e-9,5e-9)

5.2 Structure script
Geometry files serve to define the structures that will be used in FDTD simulations. Like the
main script, those files are written in Lua. The structures definition is done through functions

19
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that will assign an “index” to different parts of the discretized space. This index will then be
linked to a specific material.

It is required that the variables lx, ly and lz are defined somewhere in the script file. Those
variables define the size of the structure cell. For instance:

lx=300e-9
ly=300e-9
lz=150e-9

Except for very specific cases, the functions call order will matter. This allows to create
more complex structures than if the functions call order were random. For instance:

add_layer("Z" ,0,100,1)
add_block (25,50,25,50,25,50,0)

defines a layer of index 1, then creates a hole of index 0 inside it, while

add_block (25,50,25,50,25,50,0)
add_layer("Z" ,0,100,1)

first creates a block of index 0, then overwrites it with the layer of index 1.

5.2.1 Parameters

As seen in 5.1.1, structure files can take named parameters into account. To do so, they need to
be declared and given a default value. It is done with the declare_parameter("name",value)
function. This creates a Lua variable with the related name and a default value. This variable
can be used like any other variable afterwards. Example

declare_parameter("p" ,300e-9)
declare_parameter("h" ,300e-9)

lx=p
ly=p*math.sqrt (3)
lz=200e-9+h

Here, the Structure extent is defined through the two parameters first declared. Parameters
must be declared before being used.

5.2.2 Primitives

add_block(x1,x2,y1,y2,z1,z2,index)

Defines the region between x1, y1, z1 and x2, y2, z2 as of index index, giving this region the
shape of a block.
Example:

add_block (0,100e-9,0,150e-9,200e-9,300e-9,4)
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add_cone(Ox,Oy,Oz,Ax,Ay,Az,r,index)

Defines a cone of radius r and index index. It’s origin is given by the O⃗ vector, while its
direction and length are defined through the A⃗ vector.
Example:

add_cone (50e-9,50e-9,0,0,0,150e-9 ,1000e-9,1)

add_cylinder(Ox,Oy,Oz,Ax,Ay,Az,r,index)

Defines a cylinder of radius r and index index. It’s origin is given by the O⃗ vector, while its
direction and length are defined through the A⃗ vector.
Example:

add_cylinder (50e-9,50e-9,0,0,0,150e-9 ,1000e-9,1)

add_layer("dir",x1,x2,index)

Defines a layer of index index along the "dir" direction between x1 and x2. This layer fills
space entirely in the two other directions. "dir" can take the following values: "X", "Y" or
"Z".
Example:

add_layer("Z" ,0,100e-9,2)

add_sphere(x,y,z,r,index)

Sets a spherical region of space with the index index. This region is centered on x, y, z and is
of radius r.
Example:

add_sphere (100e-9,100e-9,50e-9,25e-9,2)

add_vect_block(Ox,Oy,Oz,Ax,Ay,Az,Bx,By,Bz,Cx,Cy,Cz,index)

Defines a parallelepiped of index index. Its offset is given through the O⃗ vector, while the A⃗, B⃗
and C⃗ vectors define the edges. Those three vectors do not need to take the offset into account
(c.f. figure below).
Example:

add_vect_block (100e-9,100e-9,50e-9,
10e-9,0,0,
0,10e-9,0,
0,0,5e-9,5)
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O⃗
A⃗

B⃗
C⃗

5.2.3 Non shape functions

default_material(index)

Fills the whole grid with the index index. This is mostly usefull to initialize the grid.
Example:

set_full (0)

flip(x,y,z)

loop(x,y,z)

5.2.4 Lua defined functions

Additionally to the preview basic shapes, users can define new shapes through Lua functions.
To do this, the function definition shall follow a particular template.

add_lua_def("name",var_arg...,index)

Example

The following example illustrates the case of a torus defined through Lua, as this shape is not
one of the basic shapes.

function torus(x,y,z,x0,y0,z0)
r0=350e-9;
a=40e-9
b=20e-9

r=math.abs(math.sqrt ((x-x0)*(x-x0)+(y-y0)*(y-y0))-r0)
h=math.abs(z-z0)

rat=b*b*(1-r*r/a/a)

if h*h<=rat
then

return 1
end
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return 0;
end

add_lua_def("torus" ,50e-9,100e-9,50e-9,2)

5.2.5 Meshes

5.3 Full scripts example

5.3.1 Geometry

The following script is a full geometry script example that defines a nanorods grid.

lx=300e-9
ly=300e-9
lz=150e-9

default_material (0)
add_layer("Z" ,0,50e-9,1)
add_block (105e-9,235e-9,0,35e-9,50e-9,70e-9,2)
add_block (0,35e-9,105e-9,235e-9,50e-9,70e-9,2)

First, lx, ly and lz are defined. Then the whole grid is intialized with the index 0 through
the set_full function. A layer of index 1 is added at the bottom of the FDTD grid along the
"Z" direction through add_layer, and will be the substrate in the simulation. Finally, two
nanorods of index 2 are defined with the function add_block, and will later in the main script
be associated to the gold material.

5.3.2 Main script

The following lines will instance a structure object based on the previous script, and pass it
to the FDTD solver within the main script.

struct=Structure("../structures/nanorods_grid.lua")

fdtd=MODE("fdtd_normal")
...
fdtd:structure(struct)
...



24 CHAPTER 5. STRUCTURES



Chapter 6

FDTD: scripting interface

6.1 Common functions

Some functions are common to some FDTD modes of the software, and are listed here.

6.1.1 auto_tsteps(Nt_max,Nt_check,lambda_min,lambda_max,coeff,Np,"layout")

This functions attemps to evaluate the advancement of a computation, and end if when results
are unlikely to change much. To do so, it performs a check every Nt_check iterations in the
following manner.

First Np points are randomly selected at the start of the simulation on the boundaries of
the grid. Boundaries can be enabled or disabled through the "layout" argument which is a
string of three characters, each of which being either n, u, d or b, which stand for none, up,
down and both, in the x, y and z order. For instance "dnb" would enable the xmin, zmin and
zmax boundaries, while "nun" would only enable the ymax boundary.

Once the points are chosen, they are assigned a wavelength chosen between lambda_min
and lambda_max, and the related fourier transforms are performed at those locations.

Then, the algorithm evaluates the convergence of those fourier transforms through iterations,
by comparing the variation to amplitude ratio of each transform to the coeff argument (typically
around 10−4 or 10−5). If the ratio for a point is less than said coeff, then the fourier transform
at that point is assumed stable. Once that criterion is checked for every point, the simulation
stops.

If this criterion is never met, the simulation will only end after Nt_max iterations.

fdtd:auto_tsteps (100000 ,500 ,400e-9 ,1000e-9,1e-5,200,"nnb")

6.1.2 Dx(dx)

Sets the x discretization to dx.

fdtd:Dx(5e-9)

6.1.3 Dy(dy)

Sets the y discretization to dy.

25
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fdtd:Dy(5e-9)

6.1.4 Dz(dz)

Sets the z discretization to dz.

fdtd:Dz(5e-9)

6.1.5 Dxyz(d)

Sets the discretization along x, y and z to d.

fdtd:Dxyz(5e-9)

6.1.6 N_tsteps(Nt)

Defines the number of time steps Nt of a simulation.
Example

fdtd:set_N_tsteps (30000)

6.1.7 material(index,"material_file")

Links the material file "material_file" to the index index defined in the simulation geometry
file.
Example:

fdtd:material(1,"mat_lib/Glass150.lua")

If the related material is supposed to be of constant real refractive index, "material_file"
may be replaced with a call to const_material, of which the only argument is that refractive
index. A material script will be generated on the fly.
Example:

fdtd:material(1, const_material (1.5))

6.1.8 padding(xm,xp,ym,yp,zm,zp)

• xm: PML padding along −x⃗

• xp: PML padding along x⃗

• ym: PML padding along −y⃗

• yp: PML padding along y⃗

• zm: PML padding along −z⃗

• zp: PML padding along −z⃗
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6.1.9 pml_X(Npml,kappa,sigma,alpha)

Functions of the pml_X kind are used to define the PMLs (absorbing boundary conditions) of
a computation. There are six of them:

• pml_xm: PML along −x⃗

• pml_xp: PML along x⃗

• pml_ym: PML along −y⃗

• pml_yp: PML along y⃗

• pml_zm: PML along −z⃗

• pml_zp: PML along z⃗

They take four arguments:

• Npml define the number of PML cells, usually around a dozen

• kappa defines what would roughly be εr at the PML end, and thus how it slows down
waves propagating into it. A value between 15 and 25 is usually suitable.

• sigma corresponds to PMLs absorption. A value of 1/
√

n seems usually efficient.

• alpha is a shift in the complex plane of the PML spatial coordinates. It is mostly useful
if PMLs encounter evanescent waves. Typically around 0.2.

The kappa, sigma and alpha coefficients are not constant along the PML axis. The first two
grow together with the PML depth, while the latter decreases in value. Example:
fdtd:pml_zp (25,25,0.7 ,0.2)
fdtd:pml_zm (25,25,1,0.2);

6.1.10 prefix("name")

Names the simulation with the prefix "name", which will be used in the name of several files
written as computation results.

6.1.11 polarization("pol")

Defines the polarization of the incident field in a simulation. "pol" can be only one of those
two cases: "TE" or "TM".
Example:
fdtd:polarization("TE")

6.1.12 register_sensor(sensor)

Links a sensor, created through the create_sensor function (c.f. section 6.6), to the simulation.
Example:
fdtd:register_sensor(fieldmap_1550)
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6.1.13 spectrum(lambda min , lambda max , Nl)

Defines the spectral range of analysis between lambda min and lambda max (in meters),
with Nl points homogeneously distributed between those two wavelengths. Warning: requesting
too many points can increase the computation time.
Example:
fdtd:spectrum (3000 ,1e-6,3e-6)

6.1.14 structure(structure object)

Links the simulation to the geometry file "geometry_file". For further details, see 5.
Example:
structure_obj=Structure("structures/nanorods_grid.lua")

fdtd:structure(structure_obj)

6.1.15 struct_append("lua")

fdtd:struct_append("subdivision_modifier (2,2,2)")

6.1.16 struct_parameters("lua")

fdtd:struct_parameters("period =1")

6.1.17 time_mod(fact)

Multiplies the natural time step ∆t = min(∆x,∆y,∆z)
c
√

3 by a factor fact that must be set between
0 and 1.

6.2 Standard mode FDTD

fdtd=MODE("fdtd")

6.2.1 Specific functions

The polarization and spectrum functions are disabled in this mode.

register_source(source)

Links a source, created through the create_source function (c.f. section 6.7), to the simula-
tion.
Example:
fdtd:register_source(oscillator)
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6.3 Normal incidence FDTD

In this mode, the structure is an infinitely periodic array in the x⃗ and y⃗ directions. The incident
field is a gaussian pulse propagating along −z⃗, for which the spectrum, and thus the analysis
spectrum, is defined through the spectrum function. At the end of the computation several
files are written onto the hard drive, each prefixed with the name given to the prefix function.

The prefix_show_norm.m file can be called by MatLab or GNU Octave. It reads pre-
fix_spectdata_norm and plots the reflection and transmission coefficients of the structure,
with no regard for the polarization, and then the transmittivity, reflectivity and absorption.

Finally, prefix_show_norm2.m reads the prefix_spectdata_norm2 file and outputs a
detailled plot of all the complex reflection and transmission coefficients for the three components
of the electric field. The goal is to show any potential polarization rotation effect.

6.3.1 Specific functions

PMLs

In this mode, only the pml_zm and pml_zp functions are available. The other four similar
functions will be disregarded if they happen to be called.

6.3.2 Full script example

structure=Structure("nanorods_grid.lua")

fdtd=MODE("fdtd_normal")
fdtd:prefix("fdtd_")
fdtd:polarization("TE")
fdtd:spectrum (1e-06,2e-06 ,481)
fdtd:N_tsteps (20000)
fdtd:structure(structure)
fdtd:Dxyz(5e-09)
fdtd:pml_zm (25,25,1,0.2)
fdtd:pml_zp (25,25,1,0.2)
fdtd:material(0, const_material (1))
fdtd:material(1, const_material (1.5))
fdtd:material(2,"mat_lib/Au_1m_5m_Vial.lua")

6.4 Oblique incidence FDTD using the Aminian and Rahmat-
Samii method

[1]

λ sin ϑ = Constant (6.1)
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6.4.1 Specific functions

kx_auto(ang_min,ang_max)

kx_fixed_angle(Nkx,lambda_min,lambda_max,angle)

Runs Nkx simulations for a specific angle angle, with the target wavelength varying between
lambda_min and lambda_max.

kx_fixed_lambda(Nkx,lambda,ang_min,ang_max)

kx_target(lambda,angle)

PMLs

In this mode, only the pml_zm and pml_zp functions are available. The other four similar
functions will be disregarded if they happen to be called.

6.4.2 Real script example

fobl=MODE("fdtd_oblique_ARS")
fobl:prefix("fobl_");
fobl:polarization("TE");
fobl:kx_fixed_lambda (3,425e-9,10,60)
fobl:structure("structures_priv/hexa_cones_s150_h300_inv.lua");
fobl:N_tsteps (100000);
fobl:spectrum (3000 ,400e-9,450e-9);
fobl:pml_zp (25,25,0.7 ,0.2)
fobl:pml_zm (25,25,1,0.2);
fobl:material(0,"mat_lib/Ind181.lua")
fobl:material(1,"mat_lib/Fspace.lua")

6.5 Single particles

This is a specific mode dedicated to simulating single particles. It is called through

fdtd=MODE("fdtd_single_particle")

In this mode, the user can choose the periodicity of the structure. For instance, if the pml_x
functions are not used the software will consider the structure is periodic along x. No analysis
is performed, and that so this part is left to the user.

6.5.1 Specific functions

structure_aux("geometry_file")

This function is used to specify an auxiliary structure for the simulation. This structure is used
for the padding around the main geometry, and is used to compute the incident field. If the
function is not used the software will just use the main grid at x = 0, y = as the auxiliary grid.
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6.5.2 Real script example

fdonut=MODE("fdtd_single_particle")
fdonut:prefix(prefix );
fdonut:polarization("TE");
fdonut:structure("structures/donut_cavity.lua");
fdonut:structure_aux("structures/donut_cavity_aux.lua");
fdonut:auto_tsteps (100000 ,500 ,400e-9 ,1000e-9,1e-5 ,200);
fdonut:spectrum (3001 ,400e-9 ,1000e-9);
fdonut:pml_xp (25,25,1,0.2);
fdonut:pml_xm (25,25,1,0.2);
fdonut:pml_yp (25,25,1,0.2);
fdonut:pml_ym (25,25,1,0.2);
fdonut:pml_zp (25,25,1,0.2);
fdonut:pml_zm (25,25,0.8 ,0.2);
fdonut:material(0,"mat_lib/Fspace.lua")
fdonut:material(1,"mat_lib/Glass150.lua")
fdonut:material(2, const_material(index))
fdonut:material(3,"mat_lib/V_Au_400_1000_PCRC2.lua")

6.6 Sensors

6.6.1 Common functions

location(x1,x2,y1,y2,z1,z2)

Sets the sensor location between x1, y1, z1 (inclus) and x2, y2, z2 (exclus). Those coordinates
must be defined with respect to the computation geometry file, and this can be negative.

name("name")

Gives the sensor the name "name", which will serve as a prefix to the names of the files written
at the end of the computation.

orientation("orientation")

This defines the sensor orientation (its normal vector), through the "orientation" variable. Its
value can be "X", "Y", "Z", "-X", "-Y" or "-Z". This function has two main goals:

• setting a direction onto which the Poynting vector will be projected, for the sensors that
need it.

• specifying the exact location of the sensor, which was previously defined through the
location function. For instance, if the orientation is "X" or "-X" the x2 variable will be
ignored. Similarly, "Y" will affect y2 and "Z" will affect z2.

spectrum(lambda)

Sets the sensor analysis wavelength lambda.
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spectrum(lambda_min,lambda_max,Nl)

Sets the sensor analysis spectrum between lambda_min and lambda_max, with Nl sam-
pling points.

6.6.2 Sensor types

fieldmap

This sensors is dedicated to creating 2D fieldmaps. The fieldmap is computed for a single
wavelength, specified through the single argument variant of spectrum.

At the end of the simulation, several files are created:

• name_fieldmap.bmp: a quick fieldmap image using a non-linear normalization

• name.m: a MatLab script that will display the fieldmap

• name_Ex_raw: a file containing the sensor data for the x component of the field

• name_Ey_raw: a file containing the sensor data for the x component of the field

• name_Ez_raw: a file containing the sensor data for the x component of the field

Example:

map=create_sensor("fieldmap")
map:spectrum (405e-9)
map:name("map")
map:orientation("Y")
map:location (0,500,0,1,0,500)

fdtd:register_sensor(map)

fieldblock

planar_spectral_poynting

This sensor integrates the Poynting vector flux across a planar surface.

6.7 Light sources

6.7.1 Common functions

location(x1,y1,z1)

Set the source location at (x1, y1, z1). Those coordinates must be defined with respect to the
computation geometry file, and this can be negative.

location(x1,x2,y1,y2,z1,z2)

Set the source location between x1, y1, z1 (included) and x2, y2, z2 (excluded). Those
coordinates must be defined with respect to the computation geometry file, and this can be
negative.
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orientation("orientation")

Defines the source orientation, that is "X", "Y" or "Z". This function is only ûsed by point
sources.

spectrum(lambda)

Defines the source wavelength as lambda.

spectrum(lambda_min,lambda_max)

Defines the source spectrum as gaussian, between lambda_min and lambda_max.

6.7.2 Source types

oscillator

This source adds field to the simulation grid at each time step. This done through a operation
like:

E(t + 1) = E(t) + sin(ωt) (6.2)

As such, this souce is not exactly a radiating electric dipole, but just shows a similar behavior.
Furthermore, field injection method can potentially create a static electric and magnetic field
at the end of the simulation, and so this source must be used with care.

This is a point source, and so its location is specified through the three arguments variant
of the location function. The excited field component is set by the orientation function. The
source has a wide spectrum, and so the two arguments variant of the spectrum function needs
to be used.
Example:

src=create_source("oscillator")
src:location (250 ,0 ,410)
src:orientation("Z")
src:spectrum (300e-9 ,1000e-9)

fdtd:register_source(src)

Electric dipole

Todo.

Magnetic dipole

Todo.
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Chapter 7

FDTD: GUI
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Part III

Ray optics: Selene
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Chapter 8

Selene: scripting interface

8.1 Principles

8.1.1 Organization

Raytracing calculations are done by setting a scene up and feeding it to a renderer. This is first
done by calling MODE("selene") which returns an instance of the Selene renderer. It only
has a few functions that can modify it.

The first one is N_rays_total(N) which will set the total number of rays that need to be
computed.

Then the user has to define the optical elements, light sources, materials, etc, and feed them
to the rendered. This is done by add_object(object) where object is a Selene object, and
add_light(light) where light is a Selene light source.

Once this is done, the user needs to call render() to start the computation. This function
can be called several times to run several simulations in a raw, after modifying an object’s
properties for instance.

Eventually, a typical script will look like

sln=MODE("selene")
sln:N_rays_total (2000000)

% Scene definition

sln:add_object(object_1)
sln:add_object(object_2)
sln:add_light(source)

sln:render ()

8.1.2 Inner workings

This is a summary of the rendering algorithm:

1. At the beginning of the rendering the object and light sources locations are recomputed
based on other objects. Various other properties can be computed, or memory or files
allocated.

39
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2. A ray is created from one of the registered light sources and is fetched by renderer

3. The intersection between this ray and every object is computed

• First, by computing the intersection with the bounding box first to have a quick
approximation

• Then by computing the intersection with the various faces of the object, if the first
step showed potential intersection

4. The intersections are looked through for the one with the smallest positive time, and the
others are discarded

5. The object related to that intersection is asked to treat the ray based on the face intersected
and the intersection location

6. It is determined from which side of the face (up or down, see 8.3) the ray is coming

7. The relevant Interface Response Function is given the ray and the refractive index of each
side of the face, and determines how the ray must be redirected based or absorbed based
on its optical properties

8. Intersections for the new ray are computed again until it is either absorbed or lost

9. The renderer fetches a new ray until the required number of rays has been computed

8.1.3 Probabilistic behavior

Raytracing usually follows a Monte-Carlo approach, that is to say one generates many random
rays in a scene, and cast them with random directions and/or locations based on the properties
of the sources, and have them intersect with objects.

How you handle those interactions, however, can be of two kinds: patch branching and
probabilistic. To illustrate path branching, let’s assume one computes the interaction of a ray
with a glass surface. The transmission and reflection coefficients are not zero, so from one
incident ray two would be generated. Those would then propagate again and generate new rays
and so on. One can immediately notice that, in pathological cases, this could make the number
of rays grow exponentially. Given enough computational time, it should be possible to address
all of them, but then a lot of CPU time would have been spent computing the children of only
one initial ray, giving much weight to that particular location.

With Selene, we have chosen to go with a full probabilistic approach. If an interface has a
reflection, transmission, and absorption coefficient, energy conservation requires that

R + T + A = 1 (8.1)

If one interprets this probabilistically, that means the sum of the probabilities for the ray to
be reflected, transmitted or absorbed is 1. Another way to see it, is that one could split the
numbers between 0 and 1 into three regions of lengths R, T and A as follows:

R T A

0 1

p
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if one takes a random number p between 0 and 1, the region p falls in will determine the result
of the calculation. This approach can be generalized to any number of effects the resulting ray
could encounter. This ensures that one ray can only give rise to at most one ray.

While the probabilistic approach does not compute the exact behavior of a specific point, it
will still statistically properly reconstruct the behavior of the whole neighborhood of it.

8.1.4 Simulation summary

After each call of render the program outputs a summary log under the file name selene_render_X
within the output_directory, where X is the render number, starting from 0. This file is a
mini-script that specifies

• the requested number of rays

• the power of each source

• the number of ray of each source

• the power carried by each ray

Its purpose is for the analysis of results after the render, for some of this information will
be required.

8.2 Relative positioning
Selene’s positioning system can be relative. That means objects can be placed relatively to
others, or the world’s origin of course.

8.2.1 Orientation

The first part of the positioning system is defining the object’s orientation. Each object comes
with its own frame, and most object primitives are aligned with a particular axis within this
frame. For instance, the axis of a cylinder is aligned with the x⃗ axis of the object’s frame. To
rotate the cylinder in the world, one thus needs to rotate the frame itself.

This rotation is specified through Euler angles. The convention chosen in this software is
yaw→pitch→roll, or zy′x”. That is, first the frame is rotated by an angle α around z⃗, then by
an angle β around the new y⃗ axis, and finally by an angle γ around the new x⃗ axis.

x⃗

y⃗

z⃗ = z⃗′

x⃗′

y⃗′

α
x⃗′

z⃗′

y⃗ = y⃗′

x⃗′′

z⃗′′

β
y⃗′′

z⃗′′

x⃗′′′ = x⃗′′

y⃗′′′

z⃗′′′

γ

Now, this rotation can either be absolute, or relative to another object. In the latter case,
the reference rotation frame will need to be set through the rotation_frame(object) function.
The frame of the object we want to manipulate will be set identical to the frame of the reference,
and then rotated.
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8.2.2 Placement

The second part of the system is relative locations. Once an objet’s orientation is set, it can be
placed in the scene relatively to the world’s origin or to another object. The purpose is to define
object groups that can move with eachother. Now, this relative location does not necessarily
need to be defined from an object’s origin to another’s. Indeed, some objects have particular
points of interest, and it can be useful to place objects relatively to those points. For instance,
two lenses can be aligned so that their focal points match. In this case, the relative locations of
the lenses’ centers is irrelevant. Those points will be called anchors, and each object type will
have its own anchors depending on its parameters.

The process is illustrated with the figure below.

O1 x⃗1

y⃗1

A

x⃗D

y⃗D

B

D⃗
O2

x⃗2

y⃗2

In this, we have two objects O1 and O2. First, O2 had its orientation set, which is different
from O1’s orientation. O1 has an anchor A, and O2 an anchor B, and we want both anchors to
be displaced relatively to eachother through the vector D⃗. Moreover, D⃗ itself can be expressed
in a frame that is independent from O1 and O2. We will then define the following properties
for O2:

• B will be its new origin

• A, belonging to O1, will be set as its displacement reference.

• the frame D will be set based on any other frame in the scene, and D⃗ will be defined
within it

We will then have
O⃗2 = O⃗1 + O⃗1A + D⃗ + ⃗BO2 (8.2)

8.3 Faces and Interface Response Functions

8.3.1 Face orientation

Up and Down

The core elements with which rays in Selene interact are the faces of the various objects of a
scene, and this section aims to describes what happens.
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Faces come in favious shapes. They can be a plane, a parabola, a triangle, etc. In every
case, faces have two sides, and the software is made so that do not necessarily behave the same
sway. We thus need to be able to differentiate both sides, and this is done by the orientation of
the normal vector to a face.

The direction towards which the normal vector is pointing will be known as “up”, or the
outside of a closed surface, and the opposite direction will be known as “down”, or the inside
of a closed surface. The direction of the normal vector determines how an incident ray will

Face

Down/Inside Up/Outside

Normal
Vector

Ray going
outside

Ray going inside

Figure 8.1: Conventions around faces in Selene

interact with the face. If the scalar product between the direction vector of a ray and the
normal factor of the face is positive, then the ray is going outside, and will be treated using the
“down” properties of the face. If that scalar product is negative, the ray is going inside, and
will be treated using the “up” properties.

Properties of each side

The most obvious property difference between the up and down sides is the material they refer
to. After all, faces are supposed to represent where there is a change in refractive index. As
such, each side will point to a different material defined by the user. Note that in some cases,
like a transparent sensor surface that is not supposed to modify rays, the materials of both sides
can be the same.

But merely knowing the materials is not enough to define what will happen to an incident
ray. Indeed, while one could just use them to compute refraction and reflection, this is not the
only way a surface can behave. Photons can be scattered, diffracted, absorbed, etc. To handle
those different behaviors, we use what we call an Interface Response Function, or IRF. The
purpose of the IRF will be to redirect a ray or destroy it depending of the various properties of
the face.

We’ve chosen to make it so that both sides of a face don’t necessarily have the same IRF.
It can be used to define non-physical, but convenient, behaviors such as a face being perfectly
antireflective from one side, and perfectly reflective from the other, or to input simulation data
for both sides (the behavior of nanostructures for instance will not be perfectly symmetrical).
As such, both sides will refer to a potentially different IRFs.

Certains IRFs will require complete frames to determine the direction of the outgoing ray.
In the case of Snell’s law such a frame can be determined from the normal vector and the ray
direction alone, but this would not work with a diffraction grating. As such, faces have an
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additional properties: a tangent vector. This vector is specified per face, per side, and can be
fixed or have a special configuration that will adapt to the face. More details are to be found
in the objects descriptions.

8.3.2 The Interface Response Function

As stated before, the purpose of the Interface Response Function is to turn an incident ray into
a reflected or transmitted ray, or to absorb it, in the manner described in section 8.1.3. This
this done in accordance to the refractive index of the related face and its tangent vector.

To each specific optical behavior corresponds an IRF. See the section 8.4.1 to known how
to assign them to objects.

Default IRFs

There are several default, basic IRFs, than can be passed to objects. They are

SEL_IRF_FRESNEL: the interface’s response obeys the Fresnel coefficients of the
associated materials, while the

SEL_IRF_PERFECT_ABSORBER: all rays hitting the interface are absorbed and
disappear

SEL_IRF_PERFECT_ANTIREFLECTOR: all rays hitting an interface go through
it, but still obey Snell’s law

SEL_IRF_PERFECT_MIRROR: rays are always reflected

User defined IRFs
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8.4 Objects
Selene objects are added through the function Selene_object("type",args). Here, args is
actually a variable sequence of argument depending on the object type. For instance, a sphere
will only have one possible argument, its radius, while a cylinder will have two: its length and
radius. This function returns an object which can then be manipulated in the script (see 8.4.1).
Usage example:

obj=Selene_object("cylinder",0.5 ,5.0)

8.4.1 Functions common to all objects

contains(x,y,z)

Returns 1 if the object contains the point defined by (x, y, z), and zero otherwise. Only valid
for volume objects. It can still be called with the others but will return an undefined value.

var=obj:contains (0.25 ,0,1.5)

default_in_IRF(IRF)

Sets the IRF for every face of the object, on the down side, to IRF.

obj:default_in_IRF(SEL_IRF_PERFECT_ABSORBER)

default_in_mat(Material)

Sets the material for every face of the object, on the down side, to Material.

obj:default_in_mat(Glass)

default_IRF(IRF)

Sets the IRF for every face of the object, on the both sides, to IRF.

obj:default_IRF(SEL_IRF_FRESNEL)

default_out_IRF(IRF)

Sets the IRF for every face of the object, on the up side, to IRF.

obj:default_out_IRF(SEL_IRF_PERFECT_MIRROR)

default_out_mat(Material)

Sets the material for every face of the object, on the up side, to Material.

obj:default_out_mat(Air)
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face_down_IRF(face number,IRF)

Sets the down IRF of the face indexed by face number (starting at 0) to IRF.

obj:face_down_IRF (0, SEL_IRF_PERFECT_ANTIREFLECTOR)

face_down_mat(face number,Material)

Sets the down material of the face indexed by face number (starting at 0) to Material.

obj:face_down_mat (12, sapphire)

face_down_tangent(face number,"type")

Sets type of the down tangent of the face indexed by face number (starting at 0) to type.
See the objects properties for more details.

obj:face_down_tangent (4,"polar")

face_down_tangent(face number,x,y,z)

Sets =the down tangent of the face indexed by face number to the vector (x,y,z).

obj:face_down_tangent (0,1,0,0)

face_IRF(face number,IRF)

Sets the IRF of the face indexed by face number (starting at 0), on both sides, to IRF.

obj:face_IRF(0, SEL_IRF_FRESNEL)

face_up_IRF(face number,IRF)

Sets the up IRF of the face indexed by face number (starting at 0) to IRF.

obj:face_up_IRF (2, SEL_IRF_PERFECT_ANTIREFLECTOR)

face_up_mat(face number,Material)

Sets the up material of the face indexed by face number (starting at 0) to Material.

obj:face_up_mat (1,Air)

face_up_tangent(face number,"type")

Sets type of the up tangent of the face indexed by face number (starting at 0) to type. See
the objects properties for more details.

obj:face_up_tangent (2,"polar_neg")
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face_up_tangent(face number,x,y,z)

Sets the up tangent of the face indexed by face number to the vector (x,y,z).

obj:face_up_tangent (4,0,1,0)

location(x,y,z)

Sets the object location to (x,y,z) within the translation frame. The true location will be
defined according to the relative positioning system. See 8.2.1 for a detailled explanation.

obj:location (1,1,0)

name("object name")

Sets the object name to name.

obj:name("main_lens")

origin(anchor name)

Sets the origin of the object to its anchor defined by anchor name. See 8.2.1 for more details,
and the objects descriptions for a list of the anchors.

obj:origin(SEL_OBJ_BOX_FACE_XP)

relative_origin(relative frame,anchor name)

Sets the relative origin of the object to anchor of the relative frame designed by anchor
name. See 8.2.1 for more details, and the objects descriptions for a list of the anchors.

obj:relative_origin(object_0 ,SEL_OBJ_BOX_CORNER_XM_YM_ZM)

rotation(α,β,γ)

Set the angles of rotation of the object to α, β and γ, in degrees, relative to the rotation
frame. See 8.2.1 for more details.

obj:rotation (45,20,0)

rotation_frame(frame)

Set the relative rotation frame of the object the to one held by frame. See 8.2.1 for more
details.

obj:rotation_frame(object_1)
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translation_frame(frame)

Set the relative translation frame of the object to the one held by frame. See 8.2.1 for more
details.

obj:translation_frame(object_0)

sensor("transp"/"abs","options 1","options 2",...)

Will turn the object into a sensor. See the section 8.5 for a full description of the options and
what they do.

obj:sensor("abs","wavelength","ID","obj_intersection")



8.4. OBJECTS 49

8.4.2 Volume primitives

Volume objects are objects that are defined by a closed surface.

Box

As its name indicates, the box object is just a block with parallel faces, over variable width,
heights and length. As such, adding one in the script will involve Selene_object("box",lx,ly,lz),
where lx and so on will be the length along the x, y and z axes. By default, the box’ origin is
its center, meaning it extends from −lx/2 to +lx/2, and so on.
Example:

obj=Selene_object("box" ,2,3,4)

The default anchor is the center of the box: SEL_OBJ_BOX_CENTER
However, the following specific point serve as anchors for the box object. Here, XM refers

to the first face on the x axis, and XP refers to the second face on the x axis. The same goes
for the y and z axes. There are six face anchors corresponding to the center of each face, and
eight corner anchors corresponding to each vertex of the box.

Faces Corners
SEL_OBJ_BOX_FACE_XM SEL_OBJ_BOX_CORNER_XM_YM_ZM
SEL_OBJ_BOX_FACE_XP SEL_OBJ_BOX_CORNER_XP_YM_ZM
SEL_OBJ_BOX_FACE_YM SEL_OBJ_BOX_CORNER_XM_YP_ZM
SEL_OBJ_BOX_FACE_YP SEL_OBJ_BOX_CORNER_XP_YP_ZM
SEL_OBJ_BOX_FACE_ZM SEL_OBJ_BOX_CORNER_XM_YM_ZP
SEL_OBJ_BOX_FACE_ZP SEL_OBJ_BOX_CORNER_XP_YM_ZP

SEL_OBJ_BOX_CORNER_XM_YP_ZP
SEL_OBJ_BOX_CORNER_XP_YP_ZP
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Cone

• SEL_OBJ_CONE_CENTER

• SEL_OBJ_CONE_FACE

• SEL_OBJ_CONE_TIP
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Cylinder
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The anchor points are

• SEL_OBJ_CYL_CENTER : the cylinder center

• SEL_OBJ_CYL_FACE_XM : the center of the face first intersecting the x axis

• SEL_OBJ_CYL_FACE_XP : the center of the face last intersecting the x axis
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Lens

While lenses could be defined from a sequence of spherical patches, a volume lens primitive is
provided through the function Selene_object("lens",thickness,radius,r1,r2).

A lens is made of two spherical caps and one cylinder. thickness specifies the intersection
points of each cap with the x⃗ axis of the lens, the first one being at -thickness/2 and the second
at thickness/2. r1 and r2 are the radii of each, and radius is the maxiùam radius of the lens
from its axis.

x⃗
C

r1

C1

r2

C2

thickness
ra

di
us

The faces of the lens are ordered as such:

0. the spherical cap that first intersects the x axis

1. the second spherical cap

2. the surrounding cylinder

The lens anchors are

• SEL_OBJ_LENS_CENTER

• SEL_OBJ_LENS_FRONT

• SEL_OBJ_LENS_REAR
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Prism
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Sphere

Spheres are a primitive created through Selene_object("sphere",radius,slice factor), where
radius is obviously the sphere radius.

Making hemispheres and every other similar shapes is the purpose of the slice factor. Just
like for cylinders, a value of 1 will give a full sphere, and a value of 0.5 will result into an
hemisphere.

x⃗
C

slice factor

There are two faces only to this object:

0. the spherical interface

1. the flat face

and two associated anchor points:

• SEL_OBJ_SPHERE_CENTER: the center of the sphere

• SEL_OBJ_SPHERE_SLICE_CENTER: the center of the flat face
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8.4.3 Surface Primitives

Cylindrical surface
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Conical surface
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Disk

Disks are flat surfaces that can help make diaphragms, and are added through Selene_object("disk",r,rin).
The outer radius is defined by r, and inner radius by rin. The disk extends in the (y, z) plane,
and its normal vector is pointed towards −x⃗.

Its only notable point is SEL_OBJ_CENTER.
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Parabola

Parabolas are basic optical surfaces that can be used to design aspheric lenses or parabolic
mirrors. they can be added to a scene through Selene_object("parabola",focal,rin,length),
with focal the location of the focal point with respect to the apex and length the total length
of the parabola. The radius parameter rin is there to provide an easy way to open an aperture
around the parabola tip.

C1 C2C F

r i
n

length

x⃗

There is only one face to it, and its normal vector points outwards. There are, however, four
notable points that can serve as anchors:

• SEL_PARABOLA_CENTER: the tip of the parabola if it were full, noted by C on
the diagram above

• SEL_PARABOLA_FOCUS: the focal point of the parabola

• SEL_PARABOLA_IN_CENTER: the center of the disk formed by the small aper-
ture, noted C1 above

• SEL_PARABOLA_OUT_CENTER: the center of the disk formed by the end of
the parabola, noted C2 above
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Rectangle

The rectangle is the flat equivalent of the box. Is this created through Selene_object("rectangle",ly,lz).
It extends in the (y, z) plane from -ly/2 to +ly/2, and -lz/2 to +lz/2.

The normal vector of the face is directed towards −x⃗. The only admissible anchor point is
SEL_OBJ_CENTER.
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Spherical patch

• SEL_OBJ_SPHERE_PATCH_CENTER

• SEL_OBJ_SPHERE_PATCH_SLICE_CENTER

8.4.4 Meshes

This object type has access to specific functions

• add_mesh("file_name"): appends the mesh designed by file_name to the object’s
mesh

• auto_recalc_normals(): recompute the face normals so that they all point outside

• N_faces(): returns the total number of faces of the mesh

Faces groups

define_faces_group(group number,first face,last face)

• faces_group_down_IRF(group number,IRF)

• faces_group_down_mat(group number,Material)

• faces_group_down_tangent(group number,"type")

• faces_group_down_tangent(group number,x,y,z)

• faces_group_IRF(group number,IRF)

• faces_group_up_IRF(group number,IRF)

• faces_group_up_mat(group number,Material)

• faces_group_up_tangent(group number,"type")

• faces_group_up_tangent(group number,x,y,z)

8.4.5 Composite objects

Booleans

Composites
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8.5 Sensors

There would be not much point to a simulation software if one could do no analysis thanks to
it. As such, some kind of sensors are necessary. In Selene, sensors are objects marked as such.

This is done through the sensor function, of which the first parameter specifies what kind
of sensor. The following parameters specify what the sensor needs to record. Example:

obj:sensor("abs","wavelength","ID","obj_intersection")

8.5.1 Absorbing sensors

This kind of sensor is basically a screen. Rays interacting with it are absorbed and disappear
from the simulation. Absorbing sensors are specified with the "abs" parameter.

8.5.2 Transparent sensors

Object defined as transparent sensors behave according to their geometry, materials, IRFs, etc,
but record interactions with rays. They can be used to monitor flux through a surface, or
evaluate the number of rays that will be absorbed through a specific region of space. They are
specified with the "transp" parameter.

8.5.3 Recording options

• "wavelength": records the ray wavelength

• "source": records the ID of the source that generated the ray

• "path": records the ray path ID. It is assigned by the source at generation, and can thus
be common to several rays. It is unique for a single source.

• "generation": records the ray number within a path, starting from 0, and increasing
after each interaction

• "length": records the ray optical path length at the intersection point

• "phase": records the phase of the ray at the intersection point

• "world_intersection": records the coordinates of the intersection with respect to the
scene frame

• "world_direction": records the directoin of the ray at the intersection with respect to
the scene frame

• "obj_intersection": records the coordinates of the intersection with respect to the
object frame

• "obj_direction": records the directoin of the ray at the intersection with respect to the
object frame
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8.5.4 File format

Objects marked as sensors will generate a file with a name like object_name_ray_sensor.
The first line contains in the following order: the coordinates of the object center (three

numbers), the vectors of the object frame (nine numbers), and the bounding box in the object
frame. All those follow the x, y, z order.

The second line is a string sequence that lists all the recorded options names.
Each subsequent line will correspond to an interaction containing the requested data in the

order specified by the second line.
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8.6 Sources
Sources are what generate rays for the renderer to compute, and nothing would happen without
them. They share many common functions with objects, but have a few dedicated ones. Source
are created using the Selene_light("type",options...) function. For instance
light_1=Selene_light("point_planar")

will create a planar point source.

8.6.1 Functions common to all light sources

discrete_spectrum({lambda 1,lambda 2,...},{weight 1,weight 2,...})

Gives the source a discrete spectrum from a list of wavelength in meters, with their associated
wavelengths
light:discrete_spectrum ({400e-9,500e-9,600e-9},{1,2,1.5})

material(Material)

Sets the ambient material of the source to Material.
light:material(Glass)

location(x,y,z)

Sets the source location to (x,y,z) within the translation frame. The true location will be
defined according to the relative positioning system. See 8.2.1 for a detailled explanation.
light:location (1,1,0)

name("source name")

Sets the source name to name.
light:name("laser")

power(value)

Sets the power of the source to anchor of the specified value in Watts.
light:power (55)

relative_origin(relative frame,anchor name)

Sets the relative origin of the source to anchor of the relative frame designed by anchor
name. See 8.2.1 for more details, and the objects and sources descriptions for a list of the
anchors.
light:relative_origin(object_0 ,SEL_OBJ_BOX_FACE_XM)
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rotation(α,β,γ)

Set the angles of rotation of the source to α, β and γ, in degrees, relative to the rotation
frame. See 8.2.1 for more details.

light:rotation (0,0,90)

rotation_frame(frame)

Set the relative rotation frame of the source the to one held by frame. See 8.2.1 for more
details.

light:rotation_frame(object_1)

spectrum("spectrum shape",option)

Defines the source as a broadband source with the related spectrum shape. It can have three
different values, with associated options.

• spectrum("flat",lambda min,lambda max) will give the source a flat spectral flux
between both boundaries, in meters

• spectrum("file","file_name") will load the associated file and assign it as the spectral
flux of the source

• spectrum("planck",lambda min,lambda max,temperature) will define the source
as a black body with the associated temperature in Kelvin, that will be sampled between
the boundaries in meters

translation_frame(frame)

Set the relative translation frame of the source to the one held by frame. See 8.2.1 for more
details.

light:translation_frame(lens)

wavelength(lambda)

Defines the source as a monochromatic source of wavelength lambda, in meters.

light:wavelength (533e-9)

8.6.2 Source types

Perfect beam

This source aims to represent a source place at infinity. Its rays are strictly parallel, along the
x axis of the source. It is instanced by the "perfect_beam" parameter.

The function aperture(radius) will set the size of the disk emitting the rays with the
corresponding radius, in meters.
Example:
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light=Selene_light("perfect_beam")
light:aperture (5e-3)

Planar point source

This source is similar to the point source, except it will emit in its (y, z) plane only. A rotation by
γ = 90◦ is thus necessary to target the (x, y) plane. It is created through the "point_planar"
parameter.
Example:

light=Selene_light("point_planar")

Point source

This is the most basic source. It will emit in all directions homogeneously. It is created through
the "point" parameter.
Example:

light=Selene_light("point")

8.6.3 Spectra

To different types of analysis will correspond different input spectra. We provide a few ways of
handling them.

In order to easily match the CIE illuminants, we assume all the spectra are actually spectral
power distributions, in W · m−1, although this does not define the actual power of the source.

Monochromatic sources

Those are the most basic types of spectra. Every ray generated by those sources will be assigned
the wavelength defined by wavelength.

Poly-monochromatic sources

They are the bridge between monochromatic sources and truly polychromatic sources, and can
approximate lights with a small number of emission rays.

They are basically several monochromatic sources bundled into one, but with different
weights associated with each wavelengths. Those wavelengths are then probabilistically given
to the generated rays according to those weights.

Such spectra are assigned through the discrete_spectrum function.

Polychromatic sources

Those are the truly polychromatic sources. In this, the spectrum is a continuous function going
from λmin to λmax. Wavelengths are then assigned to generated rays thanks to a rejection
algorithm between those boundaries. We provide three types of polychromatic spectra

Flat : every wavelength between λmin and λmax is equiprobable
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Planck : the probability distribution here is the black body distribution in wavelength form

P (λ, T ) = 2 ∗ h ∗ c3

λ5
1

e
− hc

λkBT − 1

(8.3)

User defined : in this case, the user provides a two columns text file, the first being the
wavelength, and the second the associated probability. Wavelengths are then drawn to
match this probability distribution

8.6.4 Power normalization, spectra and rays

Time

Time is an undefined quantity with respect to raytracing. One can could assume all the paths
are computed exactly at the same time, or spread across several seconds. For convenience, it
was decided computations would occur within one second, so that the values of power and total
energy emitted could be treated as the same.

Energy

Generally, rays can not represent real photons due to the sheer number of those cast by a real
light source. For instance, a 1W source would emit in the order of 1020 photons per second,
and computing them all would require incredible computational power.

The issue is then figuring out how to represent those photons with far fewer of them, in
particular the energy they carry. Real photons energy is wavelength dependent, with E = hc/λ,
but using this is not particularly convenient.

For instance, let us assume we want to simulate a light source with a flat power spectrum:
using the previous definition would imply that for one blue ray emitted by the source, there
would be two red ones. Since the computation spatial accuracy is a factor of the number of
rays cast, it would be twice as good for red ones than blue ones, which is leads to an imbalance
in simulation results.

As such, it was decided that, by default, all rays should carry the same number amount of
energy.

Number of rays per source

The total number of photons is set by the user, and they need to be distributed among sources.
This is done thanks to the power function which is serves both to relate sources to eachother,
and to define how much energy rays will carry.

If each source i emits a power Pi, and the total number of photons is N , then the number
of rays per source Ni will be

Ni = N
Pi∑

i

Pi

(8.4)

and the power of each ray will be
Pr = 1

N

∑
i

Pi (8.5)
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Selene: GUI

The purpose of this chapter is to explain the graphical interface used to manipulate Selene. In
most aspects, it is a direct translation of the scripting interface into a GUI.

As such, it is highly advised to read the previous chapter containing all the fine details about
the working principles, the constants related to the renderer or objects, etc.

9.1 Main window

Selene’s GUI is initiated by clicking the Selene button on the startup window. The window that
opens is separated into four main parts: the display panel, the rays display options, the scene
tree and the rendering options.

9.1.1 3D display

9.1.2 Rays Display

9.1.3 Scene tree

The scene tree summarizes the objects and light sources included in the scene. It is also the
control that will serve to add new elements, modify or delete them. Elements that have a
relative origin will appear as leaves of the related element.

Adding a new element

At the top of the scene tree sits a drop-down list that contains all the elements that can be
added. Those are both objects and sources. Adding a new element first requires selecting the
relevant element, and then clicking the Add button.

The related element dialog with all its parameters will then open, but the element will only
be added after clicking the Ok button. The addition will be cancelled otherwise.

Modifying an element

Elements belonging to the tree can be modified by a right click on them. This brings a popup
menu up with two choices

• Properties shows the element dialog that allows one to modify the various properties
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• Delete will remove the element from the scene. In the case it were used as a relative
frame for any other element, the latter will have said frame invalidated

9.1.4 Rendering

Once a scene is complete and properly set up (and saved to a file to avoid any lost work),
rendering it is the final step. The controls related to it will be found at the bottom left of the
window. It contains three parts:

• The N Disp control will define how many paths to display at most in the 3D view

• The N Tot control defines how many initial rays to cast from the sources.

• The Trace button will render the scene.

After the computation is over, the 3D display will show a subset of the rays that have been
computed for immediate feedback, and the various sensors will have their files written to the
hard drive.

9.2 The object dialog
The object dialog is split into four parts, three of them being tabs:

• the controls panel on the left is always visible. It serves to control the object name, and
the various properties of the positioning system. Those are then followed by the specific
object properties.

• the Geometry tab shows a 3D view of the object geometry, according to the object
properties

• the Interfaces tab serves to control the properties of each face: materials, IRFs and
tangent vectors

• the Sensor tab helps defining if an object is a sensor, what kind and what it should record

9.3 The light source dialog
The source dialog is split into two parts

• the controls panel on the left is always visible. It serves to control the source name, and
the various properties of the positioning system. Those are then followed by the specific
source properties.

• the Spectrum tab serves to define the source spectral properties. Its layout changes
depending on the kind of spectrum selected

9.4 The materials dialog
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Multilayers
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Chapter 10

Multilayers optical response:
scripting interface

10.1 Basic setup
spectrum

output

10.2 Structure definition

10.2.1 Environment

substrate
superstrate

10.2.2 Layers

add_layer

10.3 Optical response computation
compute_angle

10.4 Guided modes computation
compute_guided
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Chapter 11

Multilayers optical response: GUI

The GUI version of Aether contains a tool dedicated to computing the optical response of
multilayer structures. This is accessed from the startup window through the Multilayers
button.

11.1 Computation modes

The tool is split into two modes: spectral and angular. Both requires setting up a few controls.
First, the spectrum is set with Lambda min and Lambda max, containing N Points. The
angles of incidence are assumed to go from 0deg to 90deg with N Angles points.

11.1.1 Spectral mode

In the spectral mode, the results will computed with respect to the spectrum, and the user will
browse through the angles thanks to the slider below the graph. The slider will go from 0deg
to 90deg with N Angles.

11.1.2 Angular mode

In the angular mode, the results will computed with respect to the angle of incidence, and the
user will browse through the spectrum from Lambda min to Lambda max thanks to the
slider with N Points increments.

11.2 Multilayer structure definition

First the materials of the substrate and superstrate need to be defined. This is done through
the Superstrate and Substrate material selectors. Note that

• the incident light is assumed to be coming from the superstrate

• as such, the refractive index of the superstrate can only be real

• the angle of incidence is defined inside the superstrate

Once this is done, the various layers must be added. This is done by first selecting the layer
type from the drop-down list, and then clicking Add, within the Layers control.
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11.2.1 Layer

11.2.2 Bragg structure

For convenience, the possibility of creating Bragg structures has been added.

11.2.3 Statistical thickness distribution

If one wants
The total number of samples is selected from the Statistical Sampling control.

11.3 Results
The results are shown in real-time on the on the right of the window. There are nine curves in
total:

• the reflection, transmission and absorption for the S polarization (TE)

• the reflection, transmission and absorption for the P polarization (TM)

• the averages of both sets of curves

Their display can be selectively enabled or disabled thanks to the checkboxes under Display.

11.4 Exporting the result
The data shown on the graph can be exported through the Export Data button.
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Guided modes calculation: GUI
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Various tools
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Chapter 13

Scripting tools

13.1 dielec_planar_waveguide

guide=MODE("dielec_planar_waveguide")
guide:guide(1.9)
guide:substrate (1.0)
guide:superstrate (1.1)
guide:thickness (200e-9)
guide:lambda (500e-9)

13.2 fieldblock_treat

13.3 fieldmap_treat

13.4 index_fit

13.5 preview_fdtd_structure
This mode allows to load and visualize a FDTD geometry file (c.f. chapter 5) without requiring
a simulation to be launched. Only the structure("geometry_file") function is available in
this mode. The result is displayed in the grid directory.
Example:

test=MODE("preview_fdtd_structure")
test:file("structures/nanorods_grid.lua")

79



80 CHAPTER 13. SCRIPTING TOOLS



Chapter 14

Diffraction orders

The purpose of this tool is to help understand the number of propagative diffraction orders that
can exist in the optical response of a flat diffraction grating. It’s split in two modes selected
thanks to the Mode switch.

It is accessed through the Diffraction Orders button in the startup window.

14.1 Monochromatic mode

This is the most graphically interesting mode. The window is split in two parts: the controls
on the left, and the 2D view on the right. The controls are as follows:

• the Lambda selector defines the wavelength of interest

• Substrate and Superstrate define the refractive index of either side of the grating. Note
that only real refractive indexes must be used

• the Incidence of the incoming light is set through Theta, which is the angle from the
normal vector, and Phi which is the azimuth

• the grating parameters are set by defining the vectors of the elementary cell. This is done
through the controls inside Grating Vector 1 and Grating Vector 2, for which the
Length can be modified, as well as their Angle from the x⃗ axis.

The 3D view, on the right, shows the propagation direction of the various orders: red for those
propagating into the superstrate, and blue for those propagating into the substrate. The green
ray is the incident ray.

Note that the behavior of the 3D view can be modified through the Display controls:

• Normalized changes wether the rays have the same length, or are scaled like wave vectors.

• Superstrate enables or disables the superstrate rays.

• Substrate enables or disables the substrate rays.
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14.2 Polychromatic mode
The polychromatic mode is similar to the monochromatic one, except for a few modifications.

The first one is, obviously, that the wavelength is replaced with a spectrum selector, that
asks for a range between Lambda min and Lambda max, and a number of computed points
N Points.

The second modification is that the 3D visualization is replaced with a graph. This graph
counts the total number of propagative diffraction orders that are present either in the super-
strate or in the substrate. Note that for the superstrate this number can only go down to 1, for
specular reflection can always exist.

The final modification is the Surface Modes button. This brings a dialog up that sum-
marizes the wavelengths for which new propagative orders appear. This computation is not
exact, but based on the points of the defined spectrum. The purpose of this window is to have
a guide to interpret experimental spectra, so perfect accuracy is not necessary, and can always
be refined by increasing the number of points in the spectrum.



Chapter 15

Graphical functions fitter

15.1 Exporting the fit
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Chapter 16

Samples Explorer

The aim of the samples explorer is to help navigate a large number of samples in a use friendly
way, by dynamically generating an interface based on written rules for each sample.

16.1 Working principle

Let us assume we have a set of samples in a directory as shown in figure 16.1.

Samples directory
Project A

Sample a
Subproject SA

Sample 1
Sample 2

Subproject SB
Sample 3

Misc Directory
Mic Subdirectory

Project B
Sample 3
Sample 4

Figure 16.1: Example of a directory tree for the samples explorer module

In this, the directories containing actual samples data are highlighted in red. The aim of the
SE is to create a GUI that will display the chosen samples information and data, while ignoring
the directories that do not have any.

To do so, the user will chose the root directory that is to be analyzed, and the program
will traverse all the subdirectories looking for samples. Those are indicated by the presence
of a desription.txt file inside each of them. Without one, the content of a directory will be
ignored, and so will be any text file that does not match that exact file name.
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16.2 The description file
As stated before, each directory of interest must contain a description.txt file. This file
contains the elementary instructions that will generate the related sample user interface. Strictly
speaking, it is a Lua script and will be used to call several functions.

• date("date in any format") : will give a date to the sample. That date does not need
to follow any particular format.

• description("description text") : adds a description to the sample. There is no size
limit to it. New lines must be defined with a \n statement within the string.

• tags("tag 1","tag 2",...) : tags associated to the sample. They can be anything, usually
project names, geometry, etc, and will be used for filtering (see 16.3.2).

• add_image("path") : path to the image to display, this can be called several times to
display several pictures onto the interface

• image_description("description text") : adds a description to the last image defined
with add_image

• add_graph("caption") : defines a new graph with its associated caption

• add_data("first file path",column number of file 1,"second file path",column
number of file 2) : this will add data to be displayed onto the last defined graph. The
data must come from text files that contains several columns. The first two arguments
will define the abscissa, while the last two define the data values. Columns counting start
at 0.

• axis(x1,x2,y1,y2) : will set the default display axis of the last defined graph

Using those functions is not mandatory, and they can be omitted if irrelevant. Here is an
example of what such a file could look like:

description("Sample 1")

tags("t1","t4")

add_image("im1.jpg")
image_description("First image")

add_image("im2.jpg")
image_description("Second image")

add_image("subdir/im3.jpg")

add_graph("Graph 1")
add_data("data1.txt",0,"data1.txt" ,1)
axis(0,10,-0.5 ,1.5)

add_graph("Graph 2")
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add_data("data1.txt",0,"data1.txt" ,1)
add_data("data2.txt",0,"data2.txt" ,2)

add_graph("Graph 3")
add_data("data1.txt",0,"data1.txt" ,1)
add_data("data2.txt",0,"data2.txt" ,1)
add_data("data2.txt",0,"data2.txt" ,2)

16.3 Interface
Once the various samples have been put in their directories, and their description files written,
using the module is fairly simple.

The very first step is to define the root directory of the samples. This is done through the
... button within the Directory box. The dialog that appears will ask for the root directory.

Once set, the software browses all of the subdirectories looking for description files, and
treats them. The processing can take some time depending on the number of samples. If all
goes well, the interface should update in two ways:

• the list on the left of the window should now be populated by a list of all the samples and
their directories.

• the panel on the right should now contain an aggregate of all the samples, each having a
sample panel.

16.3.1 The sample panel

Each sample panel contains the information specified in the associated description file.

16.3.2 Tags filtering

Tags would be of little point if they could not be used to filter the results. This is the purpose
of the Filter Tags button at the bottom left of the window. A dialog appears after clicking it,
and it will help



88 CHAPTER 16. SAMPLES EXPLORER



Bibliography

[1] A. Aminian and Y. Rahmat-Samii. Spectral fdtd: a novel technique for the analysis of
oblique incident plane wave on periodic structures. Antennas and Propagation, IEEE Trans-
actions on, 54(6):1818 – 1825, june 2006.

[2] R. Luebbers, F.P. Hunsberger, K.S. Kunz, R.B. Standler, and M. Schneider. A frequency-
dependent finite-difference time-domain formulation for dispersive materials. Electromag-
netic Compatibility, IEEE Transactions on, 32(3):222 – 227, aug 1990.

[3] P. G. Etchegoin, E. C. Le Ru, and M. Meyer. An analytic model for the optical properties
of gold. The Journal of Chemical Physics, 125(16):164705, 2006.

[4] Alexandre Vial. Implementation of the critical points model in the recursive convolution
method for modelling dispersive media with the finite-difference time domain method. Jour-
nal of Optics A: Pure and Applied Optics, 9(7):745, 2007.

89


	I Introduction
	About
	A bit of history
	Past Funding
	Aether's name

	Basics
	Conventions
	Lua
	Script based operation
	Special Modes

	GUI Interface
	Graphs


	The Materials Library
	Constant materials
	Simple dispersive materials
	Cauchy
	Sellmeier

	Absorbing dispersive materials
	Drude model
	Lorentz model
	Critical points model
	Full example

	Data table based materials


	II Finite Differences
	Theoretical bases
	Finite differences
	FDTD
	Dispersive materials
	PMLs
	FDFD

	Structures
	Main script and the structure object
	Parameters
	Other functions

	Structure script
	Parameters
	Primitives
	Non shape functions
	Lua defined functions
	Meshes

	Full scripts example
	Geometry
	Main script


	FDTD: scripting interface
	Common functions
	auto_tsteps
	Dx
	Dy
	Dz
	Dxyz
	N_tsteps
	material
	padding
	pml_X
	prefix
	polarization
	register_sensor
	spectrum
	structure
	struct_append
	struct_parameters
	time_mod

	Standard mode FDTD
	Specific functions

	Normal incidence FDTD
	Specific functions
	Full script example

	Oblique incidence FDTD using the Aminian and Rahmat-Samii method
	Specific functions
	Real script example

	Single particles
	Specific functions
	Real script example

	Sensors
	Common functions
	Sensor types

	Light sources
	Common functions
	Source types


	FDTD: GUI

	III Ray optics: Selene
	Selene: scripting interface
	Principles
	Organization
	Inner workings
	Probabilistic behavior
	Simulation summary

	Relative positioning
	Orientation
	Placement

	Faces and Interface Response Functions
	Face orientation
	The Interface Response Function

	Objects
	Functions common to all objects
	Volume primitives
	Surface Primitives
	Meshes
	Composite objects

	Sensors
	Absorbing sensors
	Transparent sensors
	Recording options
	File format

	Sources
	Functions common to all light sources
	Source types
	Spectra
	Power normalization, spectra and rays


	Selene: GUI
	Main window
	3D display
	Rays Display
	Scene tree
	Rendering

	The object dialog
	The light source dialog
	The materials dialog


	IV Multilayers
	Multilayers optical response: scripting interface
	Basic setup
	Structure definition
	Environment
	Layers

	Optical response computation
	Guided modes computation

	Multilayers optical response: GUI
	Computation modes
	Spectral mode
	Angular mode

	Multilayer structure definition
	Layer
	Bragg structure
	Statistical thickness distribution

	Results
	Exporting the result

	Guided modes calculation: GUI

	V Various tools
	Scripting tools
	dielec_planar_waveguide
	fieldblock_treat
	fieldmap_treat
	index_fit
	preview_fdtd_structure

	Diffraction orders
	Monochromatic mode
	Polychromatic mode

	Graphical functions fitter
	Exporting the fit

	Samples Explorer
	Working principle
	The description file
	Interface
	The sample panel
	Tags filtering




